

New Generation Centrifugal Chiller using Low GWP Refrigerants, Beyond Refrigerants & Magnetic Centrifugal Chiller Unit

Air conditioning Energy saving new tool-Magnetic Bearing Centrifugal Chiller Unit

Mr. Wang Mao Jung

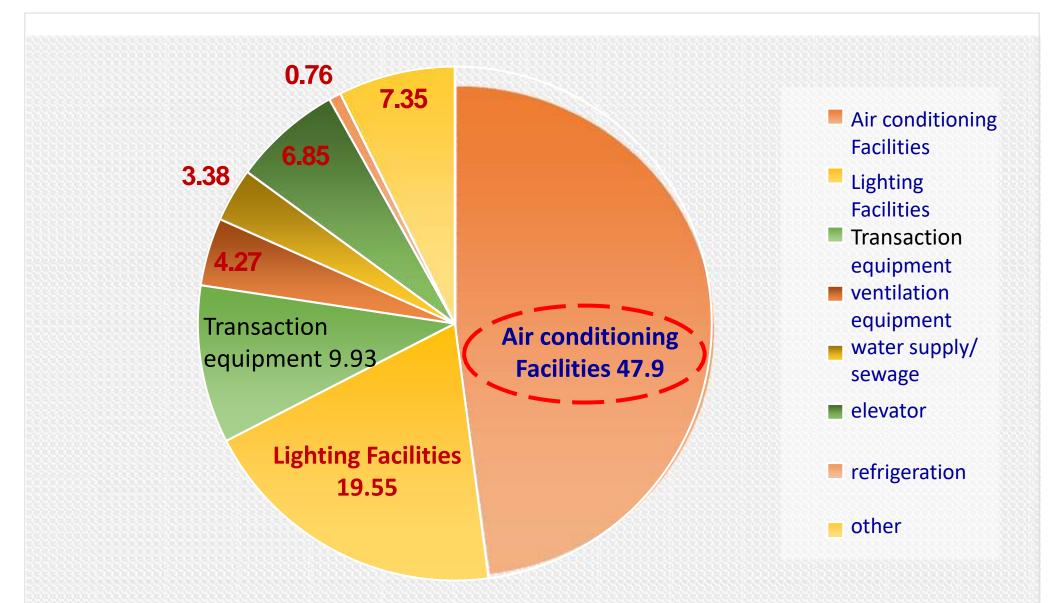
11 Dec. 2018

Outline

- 1. Energy consumption and energy saving opportunities for air conditioning systems .
- 2. Analysis of characteristics of Magnetic Bearing Centrifugal Chiller Unit

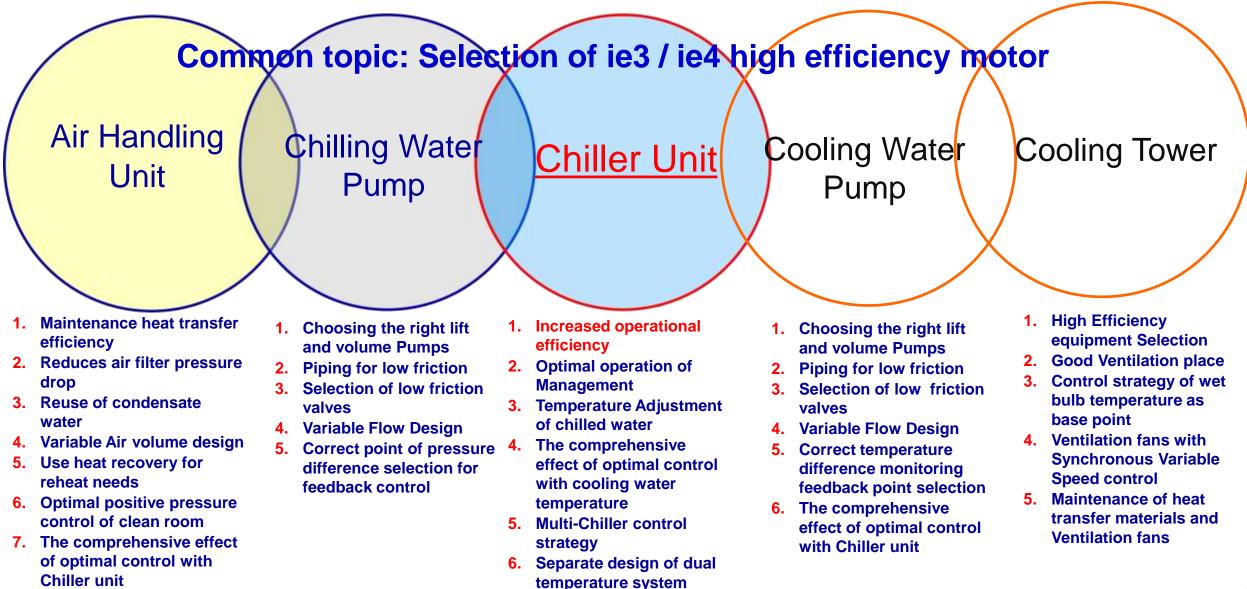
Interpretation the Characteristics of each Chiller unit and related performance data

3. Development of Magnetic Bearing Centrifugal Chiller Unit in Taiwan.


The development course and achievements of Chiller Unit in ITRI

The usage performance of Chaoyang University and Taiwan Power Building

4. Conclusion and recommendations


1. Energy consumption and energy saving opportunities for air conditioning systems

Proportion of power consumption in various facilities of Taiwan office building(%)

Source: 2017.09 Energy Bureau Publishing Office Energy Saving Application manual

Energy-saving opportunities for air conditioning systems

Energy saving scheme for air conditioning system

- Energy-saving operation of Chiller Unit
- > Optimal capacity control of air handling unit
- Optimal flow control of chilled water pump
- Optimal flow control of cooling water pump
- Optimal fans speed control of cooling tower

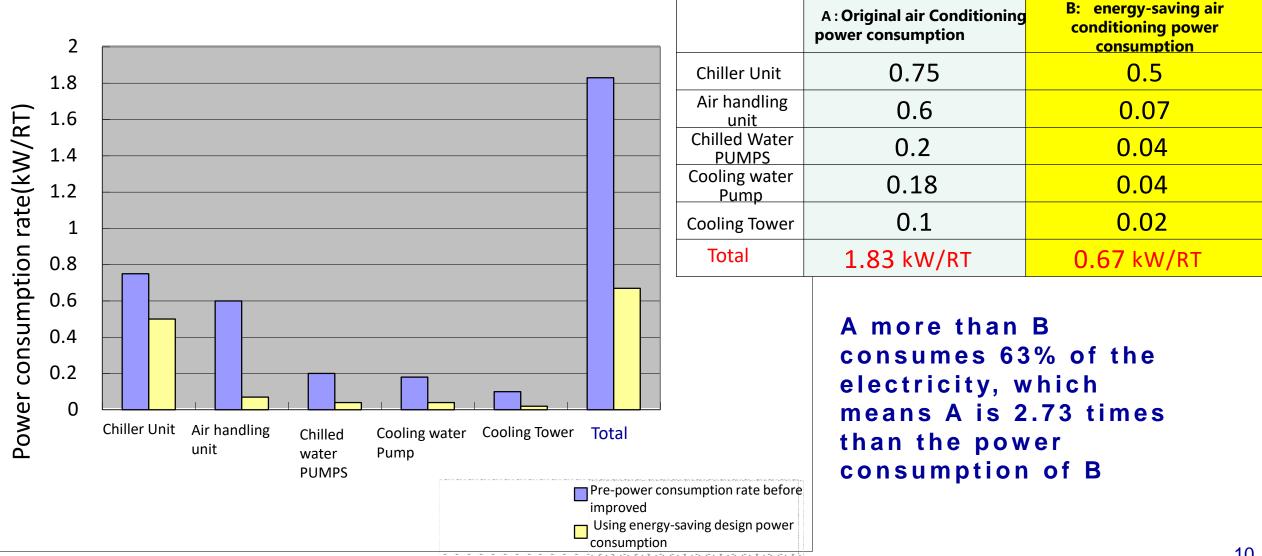
Air conditioning system has 95% of the time, equipment was operated at over capacity, to improve the partial load of the equipment, is the key point for energy saving.

Key points of energy saving of Chiller Unit

- Choosing an efficient Chiller Unit
 - Comparison of energy consumption (KW/RT), taking into account the efficiency under the conditions of full load and partial load (IPLV)
 - A 500RT Chiller as base load, compare 0.6 kW/RT with 0.7 kW/RT, save 400,000 kWh/yr (8,000 hours/yr.)
- Configure the number of Chiller and units with the appropriate capacity
 - Chiller capacity selection: Based on the actual requirements of the load, not the capacity of the device
 - ✓ Multi-Unit design: Comparison of the same capacity and difference size
- Regular maintenance, with the most appropriate operation
 - Regular detection of Chiller efficiency (approach temperature and operating power)
 - Regular maintenance and optimal operation of SCADA* system
- Note:* SCADA (Supervisory Control And Data Acquisition)

Optimal efficiency of air conditioning systems

- > At present, how about the total efficiency of Chilled facilities is reasonable?
 - Chiller Unit + cooling tower + cooling water pump + chilled water pump
- How much can the optimal overall efficiency of the air conditioning system be achieved at present?
 - Chiller Unit + cooling tower + cooling water pump + chilled water pump + air side facilities (A/H & F/C, etc.)
- The best strategy for the operation model (Group Control Strategy & reduce Start-stop)
 - Air conditioning energy saving should not sacrifice human health and comfort.


Analysis of operation efficiency of air conditioning system

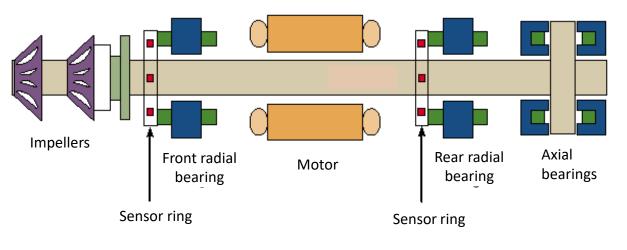
Two sets of the same specifications, the use of the same age of Chiller Unit, but the performance is different 20%, why?

9

Energy saving potential of air conditioning system

2. Analysis of magnetic centrifugal Chiller Unit

- Characteristic explanation and related performance data of each Chiller
- > The advantage of magnetic centrifuge compressor-no Refrigeration oil required
- Partial load operates much more efficiently than other units


Development trend of refrigerant centrifugal compressor

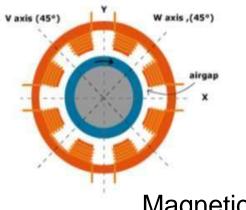
Friction-free bearings (magnetic bearings)

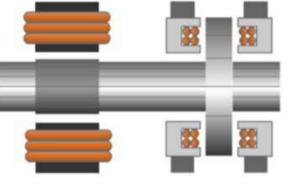
TURBOCOR

Eliminate mechanical friction loss and improve operation efficiency

Magnetic Bearings

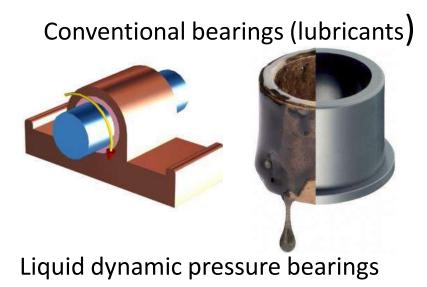
Low friction bearings (ceramic bearings)




TRANE S-Series Earth Wise Cen TraVac

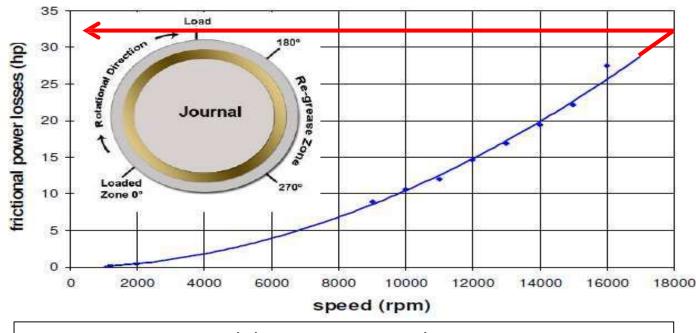
The use of composite ceramic bearings, ultra-high hardness ceramic beads with metal rollers, and refrigerant instead of oil lubrication, can constitute an oil-free compression system

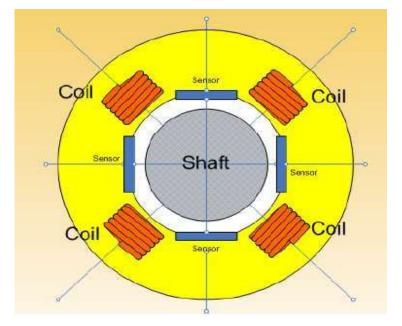
Difference between Magnetic bearings and Conventional bearings

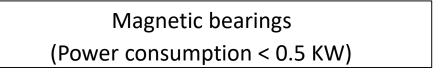

Magnetic bearings (no contact)

Magnetic bearings

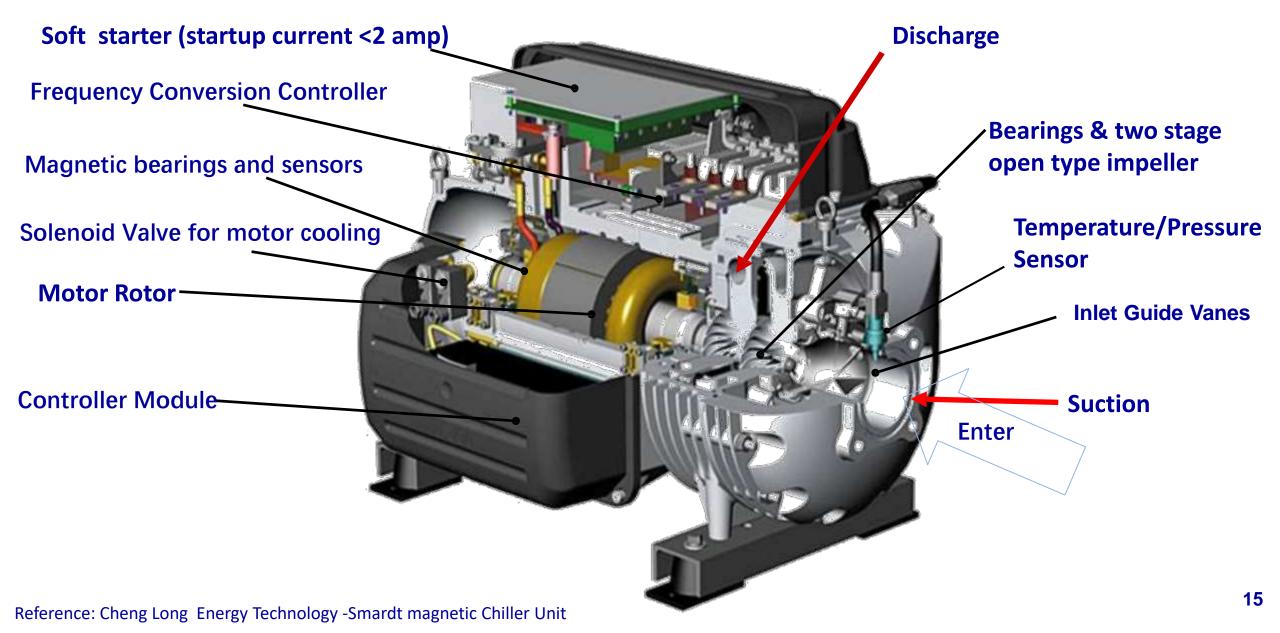
Using electromagnetic force, the rotating shaft is floated radial magnetism: Avoid of the rotating shaft deflection axial magnetism: control of the rotating shaft position without contact, no mechanical contact no friction loss mechanism power consumption <0.5 kw



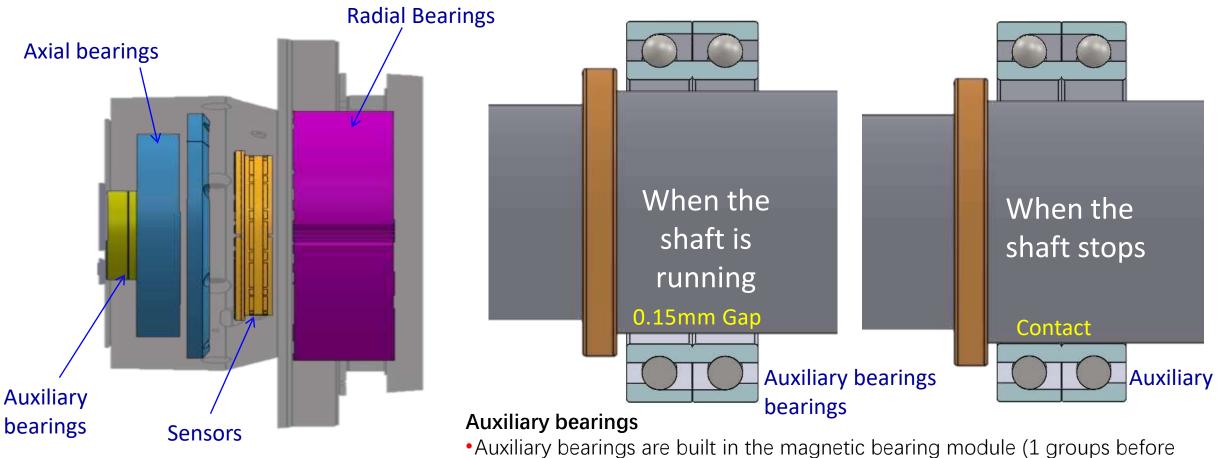

Ball bearings


Difference of power consumption between magnetic and Conventional bearing

Take R-134a 550RT single-stage compressor as an example, the speed is about 18000 rpm, input power approx. 310 KW



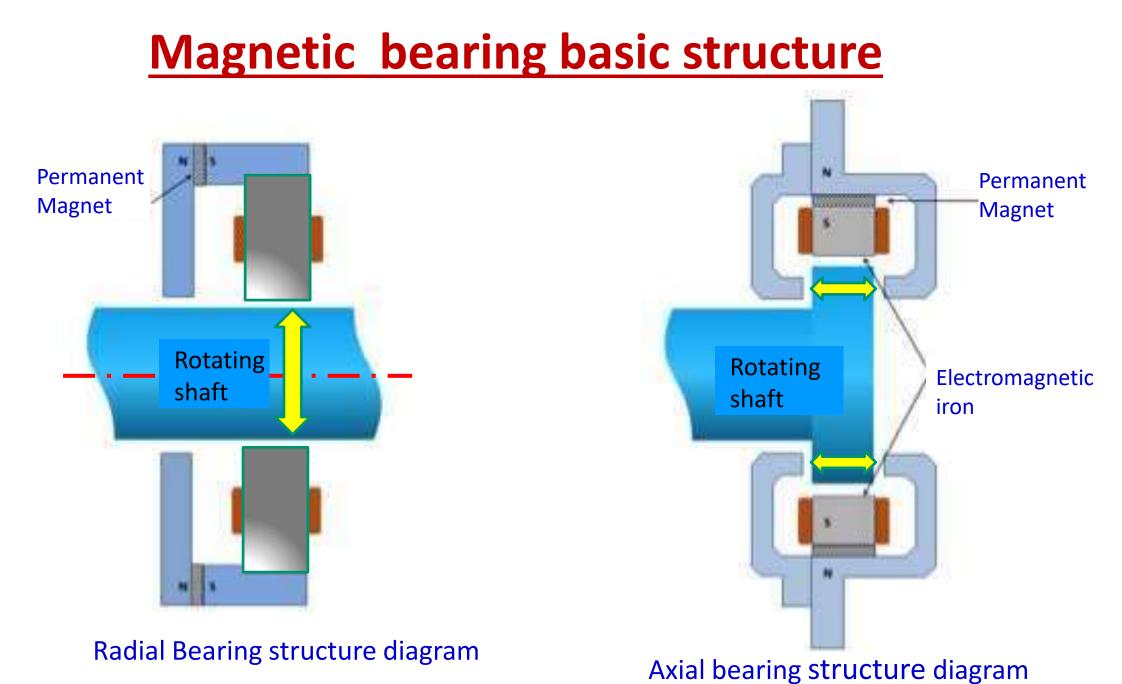
Liquid dynamic pressure bearings (Power consumption 32hp, accounting for 7% of input power)



Magnetic Bearing Centrifugal Compressor Section View

Magnetic Bearing Module

Internal configuration of Bearing modules


and after)When the shaft is in normal operation, it is floated by magnetic bearing and is

not in contact with the auxiliary bearing

 provides shaft support to protect magnetic bearings during normal or abnormal shutdown

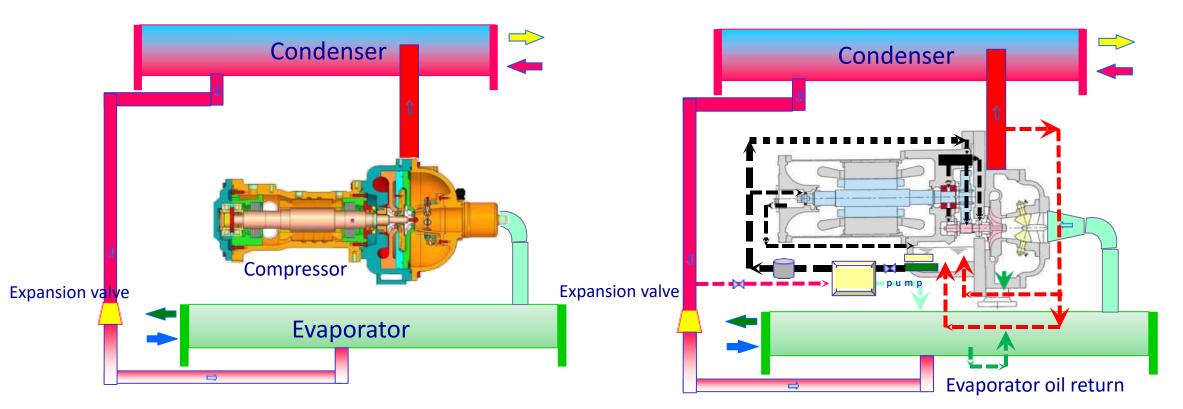
•Auxiliary bearings are ceramic bearings that can be replaced when damaged 16

Reference: Hanbell Precise Machinery Co. Ltd. -magnetic Chiller Unit

Magnetic bearing protection System

Protection projects	Set Protection values
Shaft position Protection	Radial: >0.09mm warning, >0.1mm shutdown axial: >0.08mm warning, >0.1mm shutdown
Shaft Unbalanced protection	Radial: >0.038mm warning, >0.045mm shutdown axial: >0.05mm warning, >0.06mm shutdown
Shaft elongation Protection	>0.3mm Warning, >0.4mm shutdown (avoid shaft high temperature)
Steering protection	Ensure that the steering is correct
Temperature protection of magnetic bearing Controller	>60°C Warning, >70°C shutdown
Bearing temperature protection	>75°C Warning, >85°C shutdown (>75°C, turn on auxiliary liquid cooling)
Motor Temperature Protection	>90°C Warning, >100°C shutdown (>90°C, turn on auxiliary liquid cooling)

Radial


Axial

No need for refrigeration oil lubrication, is the key advantage of magnetic centrifuge chiller unit !

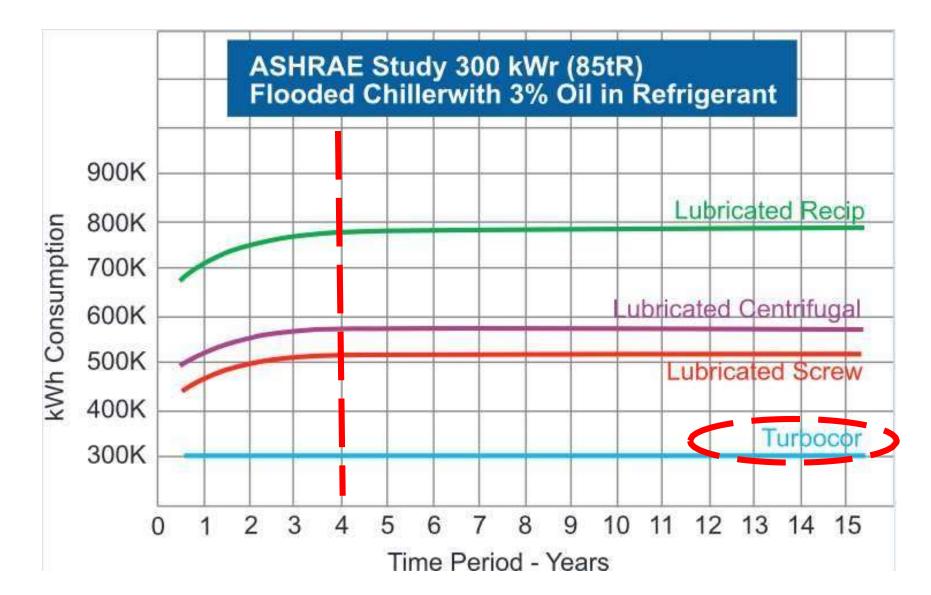
Comparison of lubrication system between magnetic and conventional Chiller unit

magnetic centrifugal Chiller Unit

Conventional centrifugal Chiller Unit

Simple lubricant free cooling system

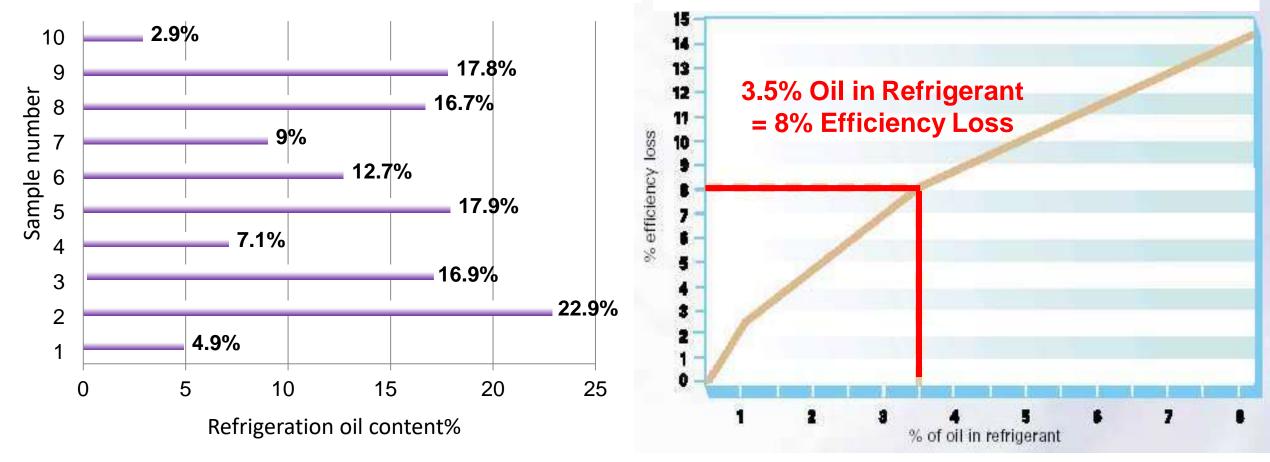
Complex oil lubricant system


Oil tank/pump/Oil Heating & Cooler/Oil Filter/Oil pressure protection/oil supply & return tube and valve parts, etc.)

Reference: LEADING ELECTRIC & MACHINERY Co., Ltd.

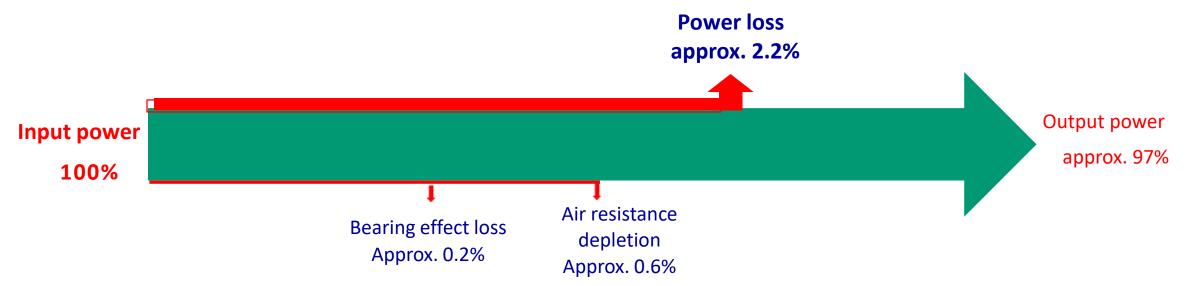
Components and costs of Refrigeration oil Iubrication

Lubrication Component	Magnetic chiller unit	Conventional chiller unit
•Refrigeration oil	Don't need	Need
•Oil storage barrel	Don't need	Need
•Oil heater	Don't need	Need
•Oil cooler	Don't need	Need
•Oil Pumps & Starter Components	Don't need	Need
•Oil filter	Don't need	Need
 Tubing Road & amp; valve Parts 	Don't need	Need
•Oil temperature Sensing/controller	Don't need	Need
•Regular refrigeration oil maintenance /	Don't need	Need
renew		
Summarize	No friction, no efficient loss, exemption from replacement oil and lubrication system parts and other maintenance costs	The risk of system failure must be borne, as well as the associated maintenance and update costs


(heat transfer efficiency will decrease by 8% after 4 years)

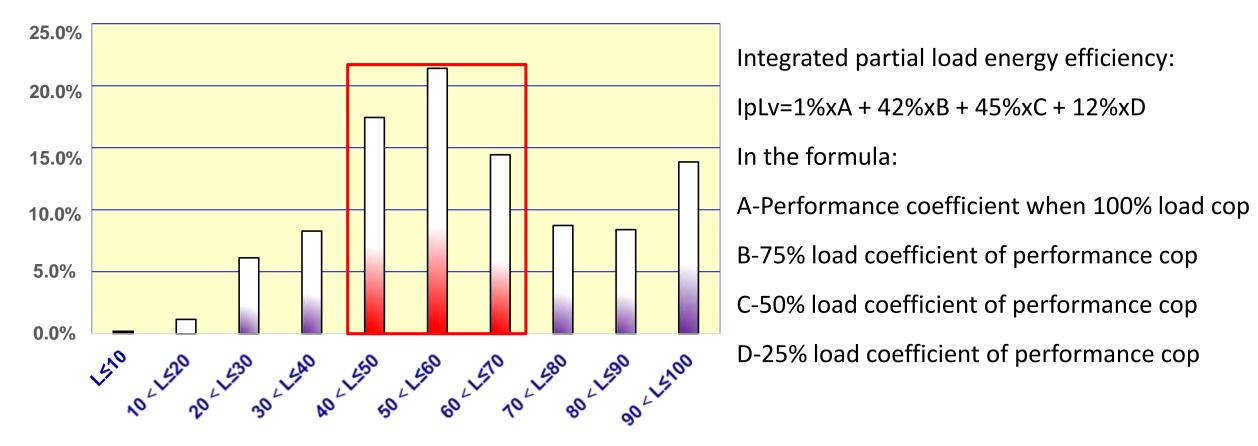
ASHRAE Report: Oil content and influence of centrifugal Chiller unit

E



Effect of system efficiency by oil content rate

Efficiency of permanent magnet synchronous motor


- Motor Direct Drive
- Light weight and small size
- Low noise Rating (<75 dBA)</p>
- Adjustable speed control
 - ✓ Adjustable Speed 7800~13500rpm
 - Effectively improve the performance of partial load

Analysis of load characteristics of Chiller Unit

> ARI 550/590 statistics, Chiller Unit 99% is running in partial load

> Most of the load on the air conditioning system is concentrated in 40~70%

Annual operating load ratio (%) distribution of Chiller Unit

Comparison of energy efficiency of all kinds of Chiller Unit

Note: 250TR water-cooled Chiller unit performance comparison reference

magnetic and Conventional Chiller unit energy efficiency ratio

LOAD [%]	Magnetic	: Oil Free	Conventional		% DIFF. IN	
	EER	kW/RT	EER	kW/RT	PERFORMANCE	
100	6.07	0.579	5.66	0.621	6.8%	
90	6.80	0.517	6.17	0.570	9.3%	
80	7.79	0.451	6.74	0.522	13.5%	
70	9.00	0.391	7.21	0.488	19.9%	
60	10.33	0.340	7.74	0.454	25.1%	
50	12.13	0.290	8.34	0.422	31.2%	
40	12.58	0.279	8.36	0.421	33.5%	
30	13.22	0.266	8.13	0.432	38.5%	
20	13.91	0.253	7.88	0.446	43.4%	
10	14.94	0.235	6.84	0.514	54.2%	

Condition at AHRI 550/590 relief, Evap. 7 /12 $^\circ$ C, Cond. 30 / 35 $^\circ$ C

Reference: Mitsubishi Electric Climaveneta High-tech water-cooled Chiller

Power consumption Analysis (for reference)

Load Rate	Chiller	Magnetic Chiller Unit	Conventional Chiller Unit	Energy
%	capacity	СОР	СОР	consumption
	RT			Differences
				%
100	250	5.98	5.55	7.2
75	187.5	8.07	6.72	16.7
50	125	11.0	7.82	28.9
25	62.5	12.4	7.48	39.7
Average energy consumption difference%				23.1

Note: Chilled water temperature 7 °C/12 °C, cooling water temperature 30 °C/35 °C

Using power comparison (for reference)

IPLV=1% x COP at 100% + 42% x COP at 75% + 45% x COP at 50% + 12% x COP at 25%

Magnetic Chiller unit = $0.01 \times 5.98 + 0.42 \times 8.07 + 0.45 \times 11.0 + 0.12 \times 12.4 = 9.89$

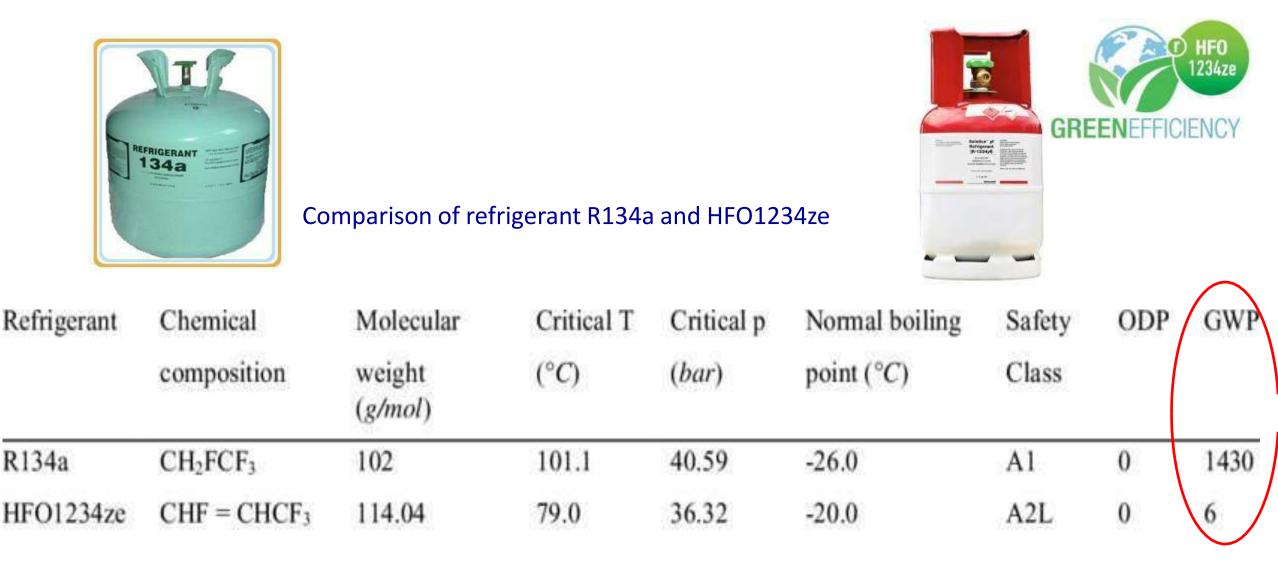
Conventional Chiller Unit= 0.01 x 5.55 + 0.42 x 6.72 + 0.45 x 7.82 + 0.12 x 7.48 = 7.29

Chiller Unit	Chiller unit capacity	Average input power kW	Running time per day	Annual Power consumption
	RT		hr / day	kWh / yr.
Magnetic Chiller unit	250	88.9	10	324,485
Conventional Chiller Unit	250	120.6	10	440,190
Annual electricity power saving (kWh / yr.)				115,705

IPLV : Integrated Part Load Value

According to the price difference of commercial electricity and the investment of equipment in Taiwan, renew the Conventional Chiller Unit with magnetic, the recovery period is about 3-4 years.

Reference data: Mitsubishi Electric CLIMAVENETA High-tech Water-cooled Chiller


Comparison of Noise spectrum

Note: in accordance with AHRI Standard 575 magnetic centrifuge Chiller test at 1 m distance noise approx. 77dBA

Reference: Cheng Long Energy Technology -Smardt magnetic Chiller Unit

Selection of refrigerant for magnetic centrifugal Chiller Unit

3.Development of Magnetic Bearing Centrifugal Chiller Unit in Taiwan

Development course and achievements of Chiller Unit in ITRI
 The real case of Chaoyang University and TaiPower Building

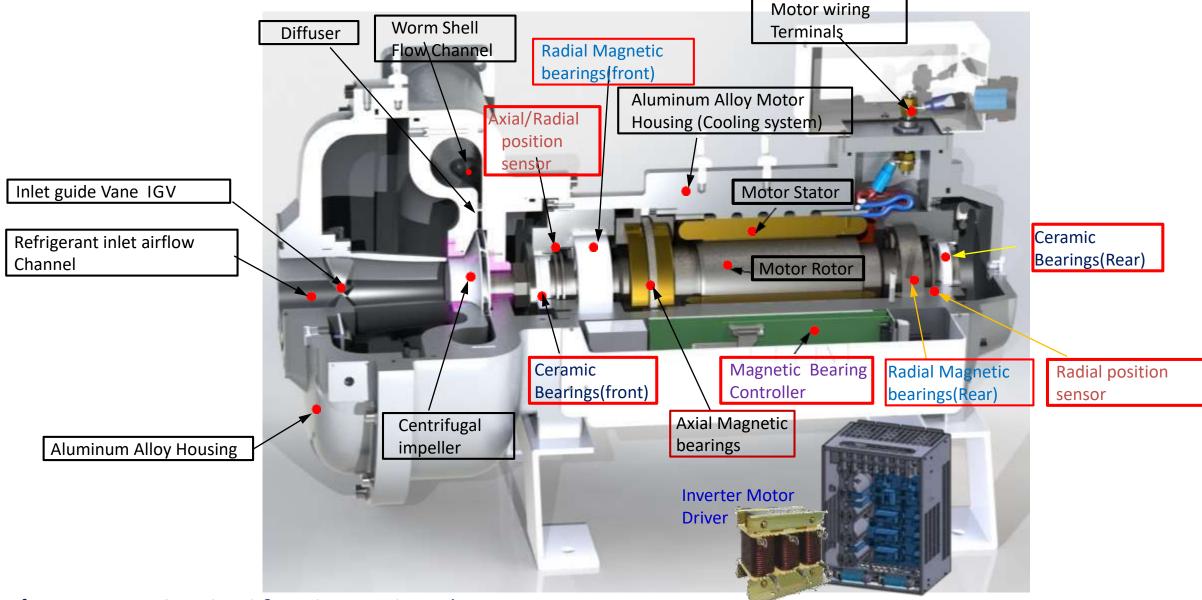
Development course and achievements of Chiller Unit in ITRI

工業技術研究院

Industrial Technology Research Institute

- The Industrial Technology Research Institute (ITRI) was established in 1973, the Headquarters is located in Hsinchu, Taiwan, is a consortium established by the Ministry of Economy, with branches and centres in 6 counties and cities, inclouded 7 Labs.,9 Centers, is the core of Taiwan's scientific and technological development. Projects related to energy-saving of air conditioners, mainly at the green Energy and Environment Lab.
- > 2013 Green Energy Lab. started the development of high IPLV * magnetic centrifugal Chiller Unit
- 2014 has developed of 100RT, 200RT and 400RT Three type, efficiency (COP) for 5.5, 5.8 and 6.2,IPLV 10.0, 11.0 and 12.0 of different models Chiller, and authorized domestic company to manufacture magnetic chiller units.
- * Note: IPLV (integrated part load value), using COP to represent part of the load efficiency of the Chiller unit

Brief introduction of magnetic centrifuge products


Magnetic flotation Centrifugal Compressor

ITRI (Taiwan Industry Technology Research Institute) development

- Single stage impeller compression refrigerant cycle
- Using R-134a refrigerant
- Capacity 200RT ~ 250RT
- Radial and axial Magnetic bearings
- Backup of front and rear ceramic bearings
- UPS (Uninterrupted power system) backup
- Variable Diffuser Flow Channel
- IGV (Inlet Guide Vane) flow control (optional)
- High speed inductive motor
- All aluminum alloy Housing
- Refrigerant cooling motor and magnetic mechanism
- VFD Frequency Conversion Control

Magnetic bearing centrifugal Compressor structure

Reference: LEADING ELECTRIC & MACHINERY Co., Ltd.

ITRI Magnetic Chiller unit test station

The first set of magnetic Chiller unit located in Chaoyang University

IPLV performance test data of magnetic centrifuge in Chaoyang University

	項目	單位	A(100%)	B(75%)	C(50%)	D(25%)
蒸	入口溫度	°C	12.185	11.022	9.590	8.464
	出口溫度	°C	7.235	7.160	7.190	7.193
發	温差	K	4.95	3.862	2.400	1.271
器	冰水流量	L/min	4012	4006	4004	4016
×1.	入口溫度	°C	29.679	24.319	18.854	18.907
冷	出口溫度	°C	34.314	27.834	20.948	20.012
凝器	溫差	K	4.64	3.515	2.094	1.105
89	冷卻水流量	L/min	5004	5012	5014	5005
	電壓	V	376.5	377.4	377.9	377.7
機組	電流	А	409.5	237.75	100.56	58.49
消耗 功率	頻率(一次側)	Hz	60	60	60	60
	功率因数	<u>5</u>	0.943	0.927	0.916	0.855
	消耗功率	kW	251.8	144.0	60.3	32.7
	冷凝器	kW	1618.14	1229.09	732.50	385.85
	散熱能力	kcal/h	1391597	1057019	629952	331828
能	蒸發器 製冷能力	kW	1385.52	1079.37	670.43	356.11
力		kcal/h	1191551	928260	576570	306257
與		USRT	394.1	307.0	190.7	101.3
荻	性能係數(COP _R)	kW/kW	5.503	7.493	11.119	10.885
率	IPLV(COP _R)	kW/kW	9.382			
	能源效率比(EER)	kcal/W-h	4.73	6.44	9.56	9.36
	每冷凍噸總消耗功率	kW/USRT	0.64	0.47	0.32	0.32
熱平衡	允許誤差(名詞說明5)	%	<5.18	<5.66	<6.97	<10.06
百分比	實測誤差	%	1.18	-0.46	-0.24	0.77

Note: This table is taken from the ITRI Test report, which was implemented on December 7, 2014 at the performance testing laboratory of the Green Energy Lab. of Hsinzhu County Chudong

Test name: magnetic centrifugal chiller unit Chiller Unit factory Brand: : LEADING ELECTRIC & MACHINERY Co., Ltd

Compressor Brand: Taiwan Ling Fung (authorized by the ITRI)

Model: LDC-0400-V6A

Compressor model and Quantity: 200IM ×2 machine number: Lm1041004-1

Compressor serial number: 200-13b-201511-001,

200-13b-201511-002

Power supply: 3ø/380v/60hz

Refrigerant: r-134a

IPLV performance test of magnetic Chiller in Chaoyang University

	Project	Unit	A(100%)	B(75%)	C(50%)	D(25%)
Evaporator	Inlet temperature	°C	12.185	11.022	9.590	8.464
	Outlet temperature	°C	7.235	7.160	7.190	7.193
	chilled water flow	L/min	4,012	4,006	4,004	4,016
Condenser	Inlet temperature	°C	29.679	24.319	18.854	18.907
	Outlet temperature	°C	34.314	27.834	20.948	20.012
	Cooling water flow	L/min	5,004	5,012	5,014	5,005
Energy Efficiency	Condenser capability	kcal/h	1,391,597	1,057,019	629,952	331,828
	Evaporator capability	kcal/h	1,191,551	928,260	576,570	306,257
		USRT	394.1	307.0	190.7	101.3
	Power consumption per RT	kW/USRT	0.64	0.47	0.32	0.32

- 1: The measured value in the table, when Chiller unit in stable operation, capture more than 15 minutes of data average (CNS 12575 standard),Calculation capacity and efficiency and percentage of thermal balance accordingly
- 2: This laboratory has TAF(Taiwan Accreditation Foundation) certification number: 0876, approved project: CNS 12575 & AHRI Standard 550/590

<u>Air conditioning system Chiller Unit improvement case</u>

Comparison of relevant data before and after this case improvement						
Project	Before the improvement	After improvement				
Device capacity	Screw Type Chiller Unit (300RT ×2)	Magnetic centrifugal Chiller Unit(400RT \times 1)				
Measurement capability	201RT & 194RT	400USRT				
Device Running power consumption	272.9 KW & 271.9 KW	251.8 KW				
Equipment operating Efficiency	1.31 Kw/RT & 1.41 Kw/RT	0.47 Kw/RT				
Hours of operation per year	2,790 hr					
electricity rate 3.29 NT\$/kwh		3.29 NT\$/kwh				

Benefit analysis of Chiller Unit before and after improvement

Before improvement:

The effectiveness of the existing Chiller Unit is: 1.31 Kw/RT, 1.41 kw/RT (taking the average value of 1.36 kw/RT). Chiller Unit operates for one year with an average load rate of 70%

Chiller Unit operating power consumption for one year: 395 RTx1.36 kw/RTx2,790 hrx70%=1,049,152 kWh

Chiller Unit operating electricity rate for one year: 1,049,152 kWhx3.29 NT\$/kwh=3,451,709 NT\$

After improvement:

Magnetic Chiller unit operating power consumption for one year: 400RTx0.47kw/RTx2,790hrx70%=367,164kwh Chiller Unit operating electricity rate for one year: 367,164kwhx3.29 NT\$/kwh=1,207,970 NT\$ Total electricity savings: 1,049,152 kwh-367,164 kwh=681,988 kWh Total savings in electricity costs: 681,988 kWhx3.29 NT\$/kwh=2,243,741 NT\$ Improved energy saving rate = (1,049,152kwh-367,164kwh) ÷1,049,152kwhx100%=65%

The Second Magnetic Bearing Centrifugal Chiller Unit located in TaiPower Building

TaiPower Building wins 2018 APIGBA Award

BA 亞太地區智慧綠建築聯盟

Asia Pacific Intelligent Green Building Alliance

2018 APIGBA Awards - Renovation Award

Taipower Headquarters

elligent Green Building

🔰 Taiwan Power Company

- Thin-Film Solar Power Demonstration System (10 kW)
- Energy saving rate : 19.5%
- Carbon reduction : 1,805 tons
- EUI(kWh /m².yr) from 2012 (EUI=106) to 2017 (EUI=75)

Introduction to the award

- Main Building (127.5 m): B3-27F
- Annex Building (43.24 m): B2-11F
- Employee number : 2,800
- One of Taipei's landmarks,
- also the name of a metro station
- Responsible for Stable Power Supply in Taiwan
- Stepwise Renovation for 36-Years-Service Building
- A Series of Energy Saving Activities
- Central Air Conditioning System Equipped with

Magnetic Bearing Centrifugal Chiller

- Elevators Installed with Energy Recovery Devices
- Green Data Center with In-Rack Cooling System
- Central Control Room with Integrated Systems
- IAQ Monitoring System with Automatic Notification
- Database of Building's Systems with Visualized Graphic Control Interface
- Multi-Purpose Recycled Rainwater System

Performance test data of magnetic Chiller IPLV in TaiPower Building

	項目	單位	測試點1	测试點2	测试點3	测试路4
蒸發器	入口温度	°C	12.246	11.165	9.725	8.621
	出口温度	°C	7.153	7.102	7.108	7.141
	溫差	K	5.09	4.06	2.62	1.48
	冰水流量	L/min	4022	4023	4022	4024
	入口温度	°C	30.173	24.633	19.230	19.013
冷凝器	出口温度	°C	35.349	28.600	21.698	20.499
17 184 60	溫差	K	5.18	3.967	2.468	1.486
	冷卻水流量	L/min	4800	4795	4790	4788
	電壓	V	377.6	375.2	375.9	376.6
機組消耗	電流	А	398.10	238.90	114.40	65.4
成組內和功率	頻率(一次側)	Hz	60	60	60	60
	功率因數	-	0.944	0.93	0.921	0.864
	消耗功率	kW	245.8	144.4	68.6	36.9
	冷凝器	kW	1733.45	1327.06	824.74	496.41
	散熱能力	kcal/h	1490765	1141269	709281	426911
	蒸發器 製冷能力	kW	1429.21	1140.28	734.35	415.45
能力		kcal/h	1229121	980643	631543	357283
與		USRT	406.5	324.3	208.9	118.2
效率	性能係數(COPR)	kW/kW	5.815	7.898	10.705	11.272
	IPLV(COP _R)	kW/kW	9.792			
	能源效率比(EER)	kcal/W-h	5.00	6.79	9.21	9.69
	每冷凍頓總消耗功率	kW/USRT	0.60	0.45	0.33	0.31
熱平衡	允許誤差(名詞說明5)	%	<5.14	<5.55	<6.68	<9.13
百分比	實測誤差	%	-3.37	-3.19	-2.64	-8.89

Note: This table is taken from ITRI Test report, which was implemented on February 19, 2016 at the performance testing laboratory of the Green Energy Lab. of Hsinzhu County Chudong.

Test name: magnetic centrifugal Chiller unit

Chiller Unit factory Brand: : LEADING ELECTRIC & MACHINERY Co., Ltd

Compressor Brand: Taiwan Ling Fung (authorized by the ITRI)

Model: LDC-0400-V6A

Compressor model and Quantity: 200IM × 2

machine number: Lm1041107-1

Compressor serial Number: 200-16B-201602-003 & 004 Power supply: 3ø/380v/60hz

Refrigerant: R-134a

Magnetic centrifugal Chiller Unit in TaiPower building IPLV Performance test Data

	Project	Unit	A (100%)	B (75%)	C (50%)	D (25%)
Evaporator	Inlet temperature	°C	12.246	11.165	9.725	8.621
	Outlet temperature	°C	7.153	7.102	7.108	7.141
	chilled water flow	L/min	4,022	4,023	4,022	4,024
Condenser	Inlet temperature	°C	30.173	24.633	19.230	19.013
	Outlet temperature	°C	35.349	28.600	21.698	20.499
	cooling water flow	L/min	4,800	4,795	4,790	4,788
Energy efficiency	Condenser capability	kcal/h	1,490,765	1,141,269	709,281	426,911
	Evenerator	kcal/h	1,229,121	980,643	631,543	357,283
	Evaporator capability	UsRT	406.5	324.3	208.9	118.2
	Every RT Power consumption	Kw/usRT	0.60	0.45	0.33	0.31

Development and application of Magnetic Bearing Chiller Unit in Taiwan

Energy saving 40%

Chaoyang University Library Bdg.400RT (2015.12)

Green Building Energy Saving 30%

TaiPower Building 400RT (2016.2)

Note: Compressor: ITRI Provide/Chiller Unit: LEADING ELECTRIC & MACHINERY Co., Ltd.

High load fluctuation

Tainan Airport Station 200RT X 2 (2016.9)

24 Hours of operation

Cheng Kung University Medical Dormitory 200RT (2016.9)

46

Development and application of Magnetic Bearing Chiller Unit in Taiwan

Green Building & Mute Demand

Load between Day and night fluctuation

ITRI 89Museum 200RT ITRI Guangfu New Bdg. 200RT (2016.12) (2017.1) Note: Compressor: ITRI Provide / Chiller Unit: LEADING ELECTRIC & MACHINERY Co., Ltd.

Transparent ICT Room Mute challenge

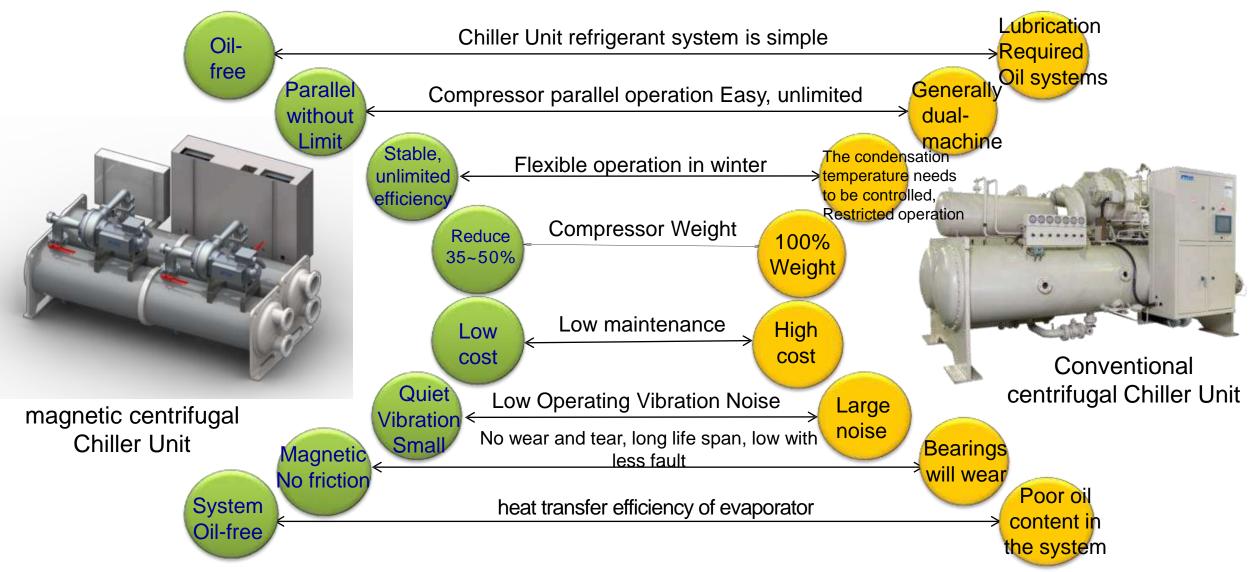
ITRI Bdg-24 200RT (2018.10)

47

Opportunities for Taiwan to develop magnetic Chiller Unit

- > Magnetic compressor localization, technology can be improved
- > Higher efficiency and a wider range of operations
- Low noise value for quieter and smoother operation
- Minimal regular maintenance needs and expenses
- > Localization of technology, maintenance can be autonomous
- Localization of parts, fast service and low cost
- Establish a professional team to provide a total solution services

magnetic centrifugal Chiller Unit



Comparison	of magnetic and	conventional centrifugal Chiller Unit

Project	Magnetic centrifugal Chiller Unit	Conventional centrifugal Chiller Unit
Operational efficiency	High	Low
Operating power consumption	Low	High
Mechanical loss	Low	High
Refrigeration oil filling	No	Yes
Operating noise	Low	High
Operating Vibration	Low	High
Compressor volume	Small	Big
Compressor weight	Light	Heavy

Advantages of magnetic centrifugal Chiller Unit

Reference: LEADING ELECTRIC & MACHINERY Co., Ltd.

Thoughts on the opening of air conditioners

Turn on the air conditioning just as throw the garbage (indoor heat load), emissions (dropped) to the outdoor

sages said: Don't unto others as we wish them don't unto us

...It is a unethical act to turn on the air conditioner and throw the rubbish.

- ✤ If air Conditioning is lacking the fresh air , indoor air quality is poor, and harmful to health
- Warm reminder: Less turn on air conditioning, or operation with fans, the application of wind speed effect, room temperature can be higher by 3 °C, energy saving 15%, save money and environmental protection!

By the way, share your idea on today's topic

Wang Mao-Jung

- 1. The Principal of Mao Jung Energy Service & Management Consulting Co., Ltd at Taiwan.
- 2. Energy Saving Consultant for various Taiwan Engineering Companies, such as Delta Electronics, CompAir Energy Technology, J-Power Systems Engineering, etc.
- 3. Independent Director, Shenghui Engineering Technology Co., Ltd at Taiwan

Experiences :

- 1.11/2011~12/2014, assisted Delta Electronics to achieve 50% energy-saving tasks.
- 2.2011 ~ Present, American Institute of Energy Engineers (AEE) Certified Instructor
- 3.04/05~17/05/2003, 14 days to complete the reconstruction of the SARS Special Medical Building of Tri-Service General Hospital Songshan Branchto accommodate the SARS patients
- 4.1996 elected as one of the Top Ten Outstanding Engineers.
- 5.1989 awarded the Refrigeration and Air Conditioning Professional Engineer
- 6.1988~2011 Industrial Technology Research Institute Senior Manager of Energy Conservation & Knowledge Management Consultant (23 years)
- 7.1975 ~ Present, Refrigeration, Air Conditioning and Energy Management Consulting Service (43 years)
- 8.1999 ~ Present, the Secretary-General, the President of the Branch, the District Chief Executive, and the Education Lecturer of the General Council of the Kiwanis International Club in Taiwan
- 9. TAF (CNLA) Laboratory Certification Member of the Technical Committee for Temperature and Thermal Test Evaluation, Reviewer
- 10. Director of Sino-German Technical Cooperation Research Association
- 11. Supervisor of Taiwan ESCO Association

Formerly:

- 1. Refrigeration and Air Conditioning Technician Verification Procurator,
- 2. Member of China Engineering Arbitration Association, North County Environmental Assessment Committee,
- 3. Standing Director of the National P.E. HVAC&R Association,
- 4. Director of ASHRAE Taiwan Chapter,
- 5. Director of Taiwan Cleaning Technology Association,
- 6. Director of Refrigeration and Air Conditioning Society

